science:formal:statistics:pdf-convolution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
science:formal:statistics:pdf-convolution [2025/09/28 02:00] falsycatscience:formal:statistics:pdf-convolution [2025/09/30 04:49] (current) falsycat
Line 27: Line 27:
  
 ^$f_x\left(x\right)$^$f_y\left(y\right)$^$f_z\left(z\right)$^ ^ ^$f_x\left(x\right)$^$f_y\left(y\right)$^$f_z\left(z\right)$^ ^
-|正規分布: $\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right)$|指数分布: $\lambda \exp\left(-\lambda x\right)$|$\lambda \exp\!\left( \lambda\mu + \frac{1}{2}\lambda^2\sigma^2 - \lambda z \right)\cdot \tfrac{1}{2}\, \mathrm{erfc}\!\left( \frac{\mu + \lambda\sigma^2 - z}{\sqrt{2}\,\sigma} \right)$|[[#正規分布-指数分布|導出手順]]|+|正規分布: $\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2}\right)$|指数分布: $\lambda \exp\left(-\lambda x\right)$|ExGaussian: $\lambda \exp\!\left( \lambda\mu + \frac{1}{2}\lambda^2\sigma^2 - \lambda z \right)\cdot \tfrac{1}{2}\, \mathrm{erfc}\!\left( \frac{\mu + \lambda\sigma^2 - z}{\sqrt{2}\,\sigma} \right)$|[[#正規分布-指数分布|導出手順]]|
  
 ==== 1. 正規分布+指数分布 ==== ==== 1. 正規分布+指数分布 ====
Line 66: Line 66:
  
 以上より、$f_Z\left(z\right)$は誤差関数$\mathrm{erfc}\left(x\right)$あるいは正規分布の累積分布関数$\Phi\left(x\right)$を用いて以下のように表せる。 以上より、$f_Z\left(z\right)$は誤差関数$\mathrm{erfc}\left(x\right)$あるいは正規分布の累積分布関数$\Phi\left(x\right)$を用いて以下のように表せる。
 +この確率密度関数で表される分布は、ExGaussian分布と呼ばれる。
  
 $$ $$
  • Last modified: 7 days ago
  • by falsycat